Flight Dynamics And System Identification For Modern Feedback Control

Flight Dynamics And System Identification For Modern Feedback Control

  • 介绍了实验飞行数据以验证和验证建模动力学
  • 基于非线性多体动力学,得出了建模禽类风格的车辆所需的新型飞行动力学模型
  • Extracts aerodynamic models of flapping flight from experimental flight data and system identification techniques
  • Reduces dynamics to linear time-periodic models to enable stability analysis and control design
    • Unmanned air vehicles are becoming increasingly popular alternatives for private applications which include, but are not limited to, fire fighting, search and rescue, atmospheric data collection, and crop surveys, to name a few. These vehicles include flapping wing designs, avian-inspired, which are safe to operate near humans and need to carry payloads while achieving manoeuverability and agility in low speed flight. Traditional methods and tools fall short of achieving the desired performance metrics and the needs of such craft. Flight dynamics and system identification for modern feedback control offers a comprehensive study of the challenges with regards to achieving controlled performance in flapping-wing, avian-inspired flight, and a new model paradigm is derived with the help of analytical and experimental methods, with which a controls designer may then apply familiar tools. This title includes eight chapters and covers flapping-wing aircraft and flight dynamics, before looking at nonlinear, multibody modelling as well as flight testing and instrumentation. Later chapters examine system identification from flight test data, feedback control and linearization.

Click here for more information.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type
Submit